Back to Search Start Over

Effects of annealing on the structure and magnetic properties of Fe80B20 magnetostrictive fibers.

Authors :
Qianke Zhu
Shuling Zhang
Guihong Geng
Qiushu Li
Kewei Zhang
Lin Zhang
Source :
Journal of Applied Biomaterials & Functional Materials. 2016 Supplement 1, Vol. 14, pS56-S61. 6p.
Publication Year :
2016

Abstract

Background: Fe80B20 amorphous alloys exhibit excellent soft magnetic properties, high abrasive resistance and outstanding corrosion resistance. In this work, Fe80B20 amorphous micro-fibers with HC of 3.33 Oe were firstly fabricated and the effects of annealing temperature on the structure and magnetic properties of the fibers were investigated. Methods: In this study, Fe80B20 amorphous fibers were prepared by the single roller melt-spinning method. The structures of as-spun and annealed fibers were investigated by X-ray diffractometer (XRD) (PANalytical X,Pert Power) using Cu Kα radiation. The morphology of the fibers was observed by scanning electron microscopy (SEM) (HITACHI-S4800). Differential scanning calorimetry (DSC) measurements of the fibers were performed on Mettler Toledo TGA/DSC1 device under N2 protection. Vibrating sample magnetometer (VSM, Versalab) was used to examine the magnetic properties of the fibers. The resonance behavior of the fibers was characterized by an impedance analyzer (Agilent 4294A) with a home-made copper coil. Results: The X-ray diffusion (XRD) patterns show that the fibers remain amorphous structure until the annealing temperature reaches 500°C. The differential scanning calorimetry (DSC) results show that the crystallization temperature of the fibers is 449°C. The crystallization activation energy is calculated to be 221 kJ/mol using Kissinger formula. The scanning electron microscopy (SEM) images show that a few dendrites appear at the fiber surface after annealing. The result indicates that the coercivity HC (//) and HC (⊥) slightly increases with increasing annealing temperature until 400°C, and then dramatically increases with further increasing annealing temperature which is due to significant increase in magneto-crystalline anisotropy and magneto-elastic anisotropy. The Q value firstly increases slightly when the annealing temperature rises from room temperature (RT) to 300°C, then decreases until 400°C. Eventually, the value of Q increases to ~2000 at annealing temperature of 500°C. Conclusions: In this study, Fe80B20 amorphous fibers with the diameter of 60 μm were prepared by the single roller melt-spinning method and annealed at 200°C, 300°C, 400°C, and 500°C, respectively. XRD results indicate that the fiber structure remains amorphous when the annealing temperature is below 400°C. α-Fe phase and Fe3B phase appear when the annealing temperature rises to 500°C, which is above the crystallization temperature of 449°C. The recrystallization activation energy is calculated to be 221 kJ/mol. The coercivity increases with increasing annealing temperature, which attributes to the increase of total anisotropy. All the as-spun and annealed fibers exhibit good resonance behavior for magnetostrictive sensors. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22808000
Volume :
14
Database :
Academic Search Index
Journal :
Journal of Applied Biomaterials & Functional Materials
Publication Type :
Academic Journal
Accession number :
116735100
Full Text :
https://doi.org/10.5301/jabfm.5000318