Back to Search Start Over

Hole-mobility limits for the Zn(OC)2 organic semiconductor obtained by SCLC and field-effect measurements.

Authors :
Landi, Giovanni
Tunc, Ali Veysel
De Sio, Antonietta
Parisi, Jürgen
Neitzert, Heinz‐Christoph
Source :
Physica Status Solidi. A: Applications & Materials Science. Jul2016, Vol. 213 Issue 7, p1909-1914. 6p.
Publication Year :
2016

Abstract

The hole mobility of a semiconducting film with a new type of small molecule has been determined by electrical characterization with two different device geometries. The small molecule, namely Zn(OC)2, consists of oxadiazole groups (O), that act as electron conductor and blue emitter, and carbazole groups (C), that are hole conductors, which are arranged around a central Zn-atom. This disordered organic material has in principal ambipolar conduction properties. In both the organic devices investigated, that is, a vertical diode and a bottom-gate organic field effect transistor, the transport is dominated by holes. In the diode structure, the charge carrier transport shows a dependence from the electric field with a space charge limited current characteristic. The hole mobility value is several orders of magnitude higher as compared to the one extracted from the characteristics of the organic transistor. This large difference in the charge carrier transport properties for the two different device configurations is due to the strong influence of the dielectric/semiconductor interface which degrades the hole transport in the organic field effect transistor. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18626300
Volume :
213
Issue :
7
Database :
Academic Search Index
Journal :
Physica Status Solidi. A: Applications & Materials Science
Publication Type :
Academic Journal
Accession number :
116791641
Full Text :
https://doi.org/10.1002/pssa.201532931