Back to Search Start Over

Probing charge carrier compensation in high energy ion irradiated III-V semiconductor by Raman spectroscopy and Hall measurements.

Authors :
Mishra, Shramana
Singh, Budhi
Bhattacharya, Sayantan
Panda, J. K.
Kabiraj, D.
Roy, Anushree
Ghosh, Subhasis
Source :
Journal of Raman Spectroscopy. Aug2016, Vol. 47 Issue 8, p963-970. 8p.
Publication Year :
2016

Abstract

Raman spectroscopy and Hall measurements have been carried out to investigate the differences in near-surface charge carrier modulation in high energy (~100 MeV) silicon ion (Si8+) and oxygen ion (O7+) irradiated n-GaAs. In the case of O ion irradiation, the observed decrease in carrier concentration with increase in ion fluence could be explained in the view of charge compensation by possible point defect trap centers, which can form because of elastic collisions of high energy ions with the target nuclei. In Si irradiated n-GaAs one would expect the carrier compensation to occur at a fluence of 2.5 × 1013 ions/cm2, if the same mechanism of acceptor state formation, as in case of O irradiation, is considered. However, we observe the charge compensation in this system at a fluence of 5 × 1012 ions/cm2. We discuss the role of the complex defect states, which are formed because of the interaction of the primary point defects, in determining carrier concentration in a Si irradiated n-GaAs wafer. The above results are combined with the reported data from the literature for high energy silver ion irradiated n-GaAs, in order to illustrate the effect of both electronic and nuclear energy loss on trap creation and charge compensation. Copyright © 2016 John Wiley & Sons, Ltd. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03770486
Volume :
47
Issue :
8
Database :
Academic Search Index
Journal :
Journal of Raman Spectroscopy
Publication Type :
Academic Journal
Accession number :
117265302
Full Text :
https://doi.org/10.1002/jrs.4916