Back to Search Start Over

Involvement of inhibition of RhoA/Rho kinase signaling in simvastatin-induced amelioration of neuropathic pain.

Authors :
Ohsawa, Masahiro
Ishikura, Kei-ichiro
Mutoh, Junpei
Hisa, Hiroaki
Source :
Neuroscience. Oct2016, Vol. 333, p204-213. 10p.
Publication Year :
2016

Abstract

Small molecular G-protein plays a key role in several diseases. This study was designed to reveal the role of RhoA signaling in the pathophysiology of neuropathic pain in mice. Partial sciatic nerve injury caused thermal hyperalgesia, mechanical allodynia, and increased plasma membrane translocation of RhoA in the lumber spinal cord. GFAP-immunoreactivity (ir), Iba-1-ir, and Rho kinase 2 (ROCK2-ir) was also increased in the ipsilateral spinal dorsal horn of nerve-ligated mice. Moreover, partial nerve ligation increased the expression of phosphorylated myristoylated alanine-rich protein kinase C substrate (MARCKS)-ir in the ipsilateral spinal dorsal horn. Daily intrathecal administration of simvastatin, beginning 3 days before nerve injury, completely blocked all these changes in nerve-ligated mice. Pharmacological inhibition of ROCK also attenuated the increased expression of GFAP-ir and phosphorylated MARCKS-ir. Together, it is suggested that astrogliosis initiated by the activation of RhoA/ROCK signaling results in MARCKS phosphorylation in nerve terminals, which leads to hyperalgesia in neuropathic pain. Furthermore, simvastatin exerts antihyperalgesic and antiallodynic effects through the inhibition of spinal RhoA activation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03064522
Volume :
333
Database :
Academic Search Index
Journal :
Neuroscience
Publication Type :
Academic Journal
Accession number :
117496312
Full Text :
https://doi.org/10.1016/j.neuroscience.2016.07.029