Back to Search Start Over

Integrated batch reactive distillation column configurations for optimal synthesis of methyl lactate.

Authors :
Aqar, Dhia Y.
Rahmanian, Nejat
Mujtaba, Iqbal M.
Source :
Chemical Engineering & Processing. Oct2016, Vol. 108, p197-211. 15p.
Publication Year :
2016

Abstract

Although batch reactive distillation process outperforms traditional reactor-distillation processes due to simultaneous reaction and separation of products for many reaction systems, synthesis of Methyl lactate (ML) through esterification of lactic acid (LA) with methanol in such process is very challenging due to difficulty of keeping the reactants together when one of the reactants (in this case methanol) has the lowest boiling point than the reaction products. To overcome this challenge, two novel reactive distillation column configurations are proposed in this work and are investigated in detail. These are: (1) integrated conventional batch distillation column (i-CBD) with recycled methanol and (2) integrated semi-batch and conventional batch distillation columns (i-SBD) with methanol recovery and recycle. Performances of each of these configurations are evaluated in terms of profitability for a defined separation task. In i-SBD column, an additional constraint is included to avoid overflow of the reboiler due to continuous feeding of methanol into the reboiler as the reboiler is initially charged to its maximum capacity. This study clearly indicates that both integrated column configurations outperform the traditional column configurations (batch or semi-batch) in terms of batch time, energy consumption, conversion of LA to ML, and the achievable profit. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02552701
Volume :
108
Database :
Academic Search Index
Journal :
Chemical Engineering & Processing
Publication Type :
Academic Journal
Accession number :
118235638
Full Text :
https://doi.org/10.1016/j.cep.2016.07.009