Back to Search Start Over

The interdecadal change of the leading mode of the winter precipitation over China.

Authors :
Ge, Jingwen
Jia, Xiaojing
Lin, Hai
Source :
Climate Dynamics. Oct2016, Vol. 47 Issue 7/8, p2397-2411. 15p.
Publication Year :
2016

Abstract

The interdecadal change of the leading mode of the mean winter precipitation over China has been investigated using observational data for the period from 1960 to 2012. The leading empirical orthogonal function (EOF) mode (EOF1) of the winter precipitation over China displays a mono-sign pattern over southeastern China, accounting for 49.7 % of the total variance in the precipitation. Both the El Niño-Southern Oscillation (ENSO) and the East Asian winter monsoon (EAWM) can impact EOF1. A positive (negative) EOF1 is accompanied by warm (cold) ENSO events and weak (strong) EAWM, and the latters can cause anomalous southerlies (northerlies) along the coast of southeastern China, accompanied by the transportation of water vapor from the Bay of Bengal and the South China Sea favoring a wet (dry) winter over southeastern China. An abrupt transition of the EOF1 is observed around the mid-1980s. Therefore, the data are divided into two subperiods, i.e., 1960-1987 (P1) and 1988-2009 (P2). Significant differences in the large scale atmospheric circulation and sea surface temperature anomalies associated with EOF1 during these two subperiods are observed. EOF1 is closely related to the mid- to high-latitude atmospheric circulation in P1, while its relationship to the tropics obviously increases during P2. The partial regression analysis results show that the interdecadal change of EOF1 is caused by both the interdecadal changes of the EAWM and ENSO around the mid-1980s. In P1, the lower-level anomalous southerlies along the coastal southeastern China accompanied by water vapor transportation that causes above-average precipitation are related to an anti-cyclonic system centered over the mid-latitude western North Pacific associated with EAWM. In P2, the influence of the EAWM is weaker, and the southerly anomaly over the coastal southeastern China is mainly caused by the anticyclone over Philippines, which is related to the ENSO. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09307575
Volume :
47
Issue :
7/8
Database :
Academic Search Index
Journal :
Climate Dynamics
Publication Type :
Academic Journal
Accession number :
118328512
Full Text :
https://doi.org/10.1007/s00382-015-2970-x