Back to Search Start Over

Static lateral stiffness of wire rope isolators.

Authors :
Balaji, Palani S.
Leblouba, Moussa
Rahman, Muhammad E.
Ho, Lau Hieng
Source :
Mechanics Based Design of Structures & Machines. 2016, Vol. 44 Issue 4, p462-475. 14p.
Publication Year :
2016

Abstract

This paper presents an analytical model for the static lateral stiffness of Wire Rope Isolators (WRI). The wire rope isolator, which is a passive isolation device, has been widely adopted as a shock and vibration isolation for many types of equipment and lightweight structures. The major advantage of the WRI is its ability to provide isolation in all three planes and in any orientation. The WRI in the lateral roll mode, is required to possess the required lateral stiffness to support and isolate the equipment effectively. The static lateral stiffness of WRI depends mainly on the geometrical characteristics and wire rope properties. The model developed in this paper is validated experimentally using a series of monotonic loading tests. The flexural rigidity of the wire ropes, which is required in the model, was determined from the transverse bending test on several wire rope cables. It was observed that the lateral stiffness is significantly influenced by the wire rope diameter and height of the isolator. The proposed analytical model can be used for the evaluation of lateral stiffness and in the preliminary design of the WRI. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
15397734
Volume :
44
Issue :
4
Database :
Academic Search Index
Journal :
Mechanics Based Design of Structures & Machines
Publication Type :
Academic Journal
Accession number :
118710664
Full Text :
https://doi.org/10.1080/15397734.2015.1116996