Back to Search Start Over

Local–global problem for Drinfeld modules

Authors :
van der Heiden, Gert-Jan
Source :
Journal of Number Theory. Feb2004, Vol. 104 Issue 2, p193. 17p.
Publication Year :
2004

Abstract

Let <f>K</f> be a function field with an <f>A</f>-algebra structure. The ring <f>A</f> arises in the definition of the Drinfeld module <f>φ</f> over <f>K</f>. By <f>E(K)</f> we denote <f>K</f> together with the <f>A</f>-module structure induced on it by <f>φ</f>. For any principal prime ideal <f>(a)⊂A</f>, we study the question whether an element <f>x∈E(K)</f> which is an <f>a</f>-fold in <f>E(Kν)</f> for every place <f>ν</f> of <f>K</f>, is an <f>a</f>-fold in <f>E(K)</f>. In particular, we study the groupS(a,K)≔ker<fen><cp type="lpar" style="s">E(K)/aE(K)→∏lower limit ν E(Kν)/aE(Kν)<cp type="rpar" style="s"></fen>for Drinfeld modules of rank <f>2</f>. We show that this finite group is trivial in many cases, but can become arbitrarily large. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
0022314X
Volume :
104
Issue :
2
Database :
Academic Search Index
Journal :
Journal of Number Theory
Publication Type :
Academic Journal
Accession number :
11886430
Full Text :
https://doi.org/10.1016/S0022-314X(03)00163-X