Back to Search Start Over

Constant pressure control for variable-rate spray using closed-loop proportion integration differentiation regulation.

Authors :
Wei Deng
Chunjiang Zhao
Liping Chen
Xiu Wang
Source :
Journal of Agricultural Engineering (1974-7071). 2016, Vol. 47 Issue 3, p148-156. 9p.
Publication Year :
2016

Abstract

Traditional sprayers adopt large-area uniform pesticide application, resulting in a low effective utilisation of pesticide and a harmful effect to the natural environment. Variable-rate spray is the key point to precision chemical application. However, it is inevitable that the spray pressure sharply fluctuates during variable-rate spray, which will definitely influence the spray characteristics, such as spray droplet sizes, spray angles, spray droplet velocities, etc., and reduce the efficiency of pesticide applications. Therefore, the research on how to keep the spray pressure constant during the process of variable- rate spray has practical significance to precision pesticide applications. In order to achieve the stability of spray pressure for variable- rate spray, a sprayer with constant-pressure control was set up using a closed-loop proportion integration differentiation (PID) controller of constant-pressure water-supply, which employed the techniques of single-phase alternating current (AC) chopper variablevoltage control and PID feedback regulation. Using hollow-cone nozzles, the spray volume was changed by adjusting spray pressure, frequency, and duty cycle of electromagnetic valve switching. The spray features concerning the spray angle and the spray volume distribution were studied in laboratory. The conclusions are as follows: i) for a given input spray pressure, the closed-loop controller with AC chopper and PID feedback regulation can effectively control the pressure fluctuations during the variable-rate spray through varying the frequency and the duty cycle; ii) the spray angle was slightly affected by the flow-rate change through adjusting the frequency and the duty cycle of electromagnetic valves or changing the number of open nozzles. The spray angle changes were controlled within the range of the maximum deviation 0.87° from mean value and the minimum deviation 0.03° from mean value; iii) when the spray pressure was set as 0.3 Mpa, the peak radial position of the spray volume distribution basically unchanged and the spray volume and the peak values of the spray distribution gradually increased with the increasing duty cycle. When the setting pressure was increased, the spray volume increased and the peak radial position of the spray distribution gradually expanded toward outside, however the peak value of the spray distribution decreased a little. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19747071
Volume :
47
Issue :
3
Database :
Academic Search Index
Journal :
Journal of Agricultural Engineering (1974-7071)
Publication Type :
Academic Journal
Accession number :
118892398
Full Text :
https://doi.org/10.4081/jae.2016.512