Back to Search Start Over

Dynamics of simultaneously impinging drops on a dry surface: Role of impact velocity and air inertia.

Authors :
Ashoke Raman, K.
Jaiman, Rajeev K.
Lee, Thong-See
Low, Hong-Tong
Source :
Journal of Colloid & Interface Science. Jan2017, Vol. 486, p265-276. 12p.
Publication Year :
2017

Abstract

Three dimensional simulations are performed to investigate the interaction dynamics between two drops impinging simultaneously on a dry surface. Of particular interest in this study is to understand the effects of impact velocity and surrounding gas density on droplet interactions. To simulate the droplet dynamics and morphologies, a computational framework based on the phase-field lattice Boltzmann formulation is employed for the two-phase flow computations involving high density ratio. Two different coalescence modes are identified when the impinging droplets have different impact speeds. When one of the droplet has a tangential impact velocity component, asymmetric ridge formation is observed. Influence of droplet impact angle on the interaction dynamics of the central ridge is further investigated. Traces of different fluid particles are seeded to analyse internal flow dynamics in oblique impact scenarios. Greater overlapping between the fluid particles is observed with increase in the impact angle. Finally, the present simulations indicate that the ambient gas density has a significant influence to determine the final outcome of the droplet interactions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219797
Volume :
486
Database :
Academic Search Index
Journal :
Journal of Colloid & Interface Science
Publication Type :
Academic Journal
Accession number :
118924123
Full Text :
https://doi.org/10.1016/j.jcis.2016.09.062