Back to Search Start Over

Interaction-Driven Spontaneous Quantum Hall Effect on a Kagome Lattice.

Authors :
Zhu, W.
Shou-Shu Gong
Tian-Sheng Zeng
Liang Fu
Sheng, D. N.
Source :
Physical Review Letters. 8/26/2016, Vol. 117 Issue 9, p1-1. 1p.
Publication Year :
2016

Abstract

Topological states of matter have been widely studied as being driven by an external magnetic field, intrinsic spin-orbital coupling, or magnetic doping. Here, we unveil an interaction-driven spontaneous quantum Hall effect (a Chern insulator) emerging in an extended fermion-Hubbard model on a kagome lattice, based on a state-of-the-art density-matrix renormalization group on cylinder geometry and an exact diagonalization in torus geometry. We first demonstrate that the proposed model exhibits an incompressible liquid phase with doublet degenerate ground states as time-reversal partners. The explicit spontaneous time-reversal symmetry breaking is determined by emergent uniform circulating loop currents between nearest neighbors. Importantly, the fingerprint topological nature of the ground state is characterized by quantized Hall conductance. Thus, we identify the liquid phase as a quantum Hall phase, which provides a "proof-of-principle" demonstration of the interaction-driven topological phase in a topologically trivial noninteracting band. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00319007
Volume :
117
Issue :
9
Database :
Academic Search Index
Journal :
Physical Review Letters
Publication Type :
Academic Journal
Accession number :
118978504
Full Text :
https://doi.org/10.1103/PhysRevLett.117.096402