Back to Search Start Over

Effect of grain port length–diameter ratio on combustion performance in hybrid rocket motors.

Authors :
Cai, Guobiao
Zhang, Yuanjun
Tian, Hui
Wang, Pengfei
Yu, Nanjia
Source :
Acta Astronautica. Nov2016, Vol. 128, p83-90. 8p.
Publication Year :
2016

Abstract

The objectives of this study are to develop a more accurate regression rate considering the oxidizer mass flow and the fuel grain geometry configuration with numerical and experimental investigations in polyethylene (PE)/90% hydrogen peroxide (HP) hybrid rocket. Firstly, a 2-D axisymmetric CFD model with turbulence, chemistry reaction, solid–gas coupling is built to investigate the combustion chamber internal flow structure. Then a more accurate regression formula is proposed and the combustion efficiency changing with the length–diameter ratio is studied. A series experiments are conducted in various oxidizer mass flow to analyze combustion performance including the regression rate and combustion efficiency. The regression rates are measured by the fuel mass reducing and diameter changing. A new regression rate formula considering the fuel grain configuration is proposed in this paper. The combustion efficiency increases with the length–diameter ratio changing. To improve the performance of a hybrid rocket motor, the port length–diameter ratio is suggested 10–12 in the paper. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00945765
Volume :
128
Database :
Academic Search Index
Journal :
Acta Astronautica
Publication Type :
Academic Journal
Accession number :
119161366
Full Text :
https://doi.org/10.1016/j.actaastro.2016.07.002