Back to Search Start Over

Genome origin, historical hybridization and genetic differentiation in Anthosachne australasica (Triticeae; Poaceae), inferred from chloroplast rbcL, trnH-psbA and nuclear Acc1 gene sequences.

Authors :
Li-Na Sha
Xing Fan
Xiao-Li Wang
Zhen-Zhen Dong
Jian Zeng
Hai-Qin Zhang
Hou-Yang Kang
Yi Wang
Jin-Qiu Liao
Yong-Hong Zhou
Source :
Annals of Botany. Jan2017, Vol. 119 Issue 1, p95-107. 13p.
Publication Year :
2017

Abstract

Background and Aims Anthosachne Steudel is a group of allopolyploid species that was derived from hexaploidization between the Asian StY genome Roegneria entity and the Australasia W genome Australopyrum species. Polyploidization and apomixis contribute to taxonomic complexity in Anthosachne. Here, a study is presented on the phylogeny and evolutionary history of Anthosachne australasica. The aims are to demonstrate the process of polyploidization events and to explore the differentiation patterns of the St genome following geographic isolation. Methods Chloroplast rbcL and trnH-psbA and nuclear Acc1 gene sequences of 60 Anthosachne taxa and nine Roegneria species were analysed with those of 33 diploid taxa representing 20 basic genomes in Triticeae. The phylogenetic relationships were reconstructed. A time-calibrated phylogeny was generated to estimate the evolutionary history of A. australasica. Nucleotide diversity patterns were used to assess the divergence within A. australasica and between Anthosachne and its putative progenitors. Key Results Three homoeologous copies of the Acc1 sequences from Anthosachne were grouped with the Acc1 sequences from Roegneria, Pseudoroegneria, Australopyrum, Dasypyrum and Peridictyon. The chloroplast sequences of Anthosachne were clustered with those from Roegneria and Pseudoroegneria. Divergence time for Anthosachne was dated to 4·66 million years ago (MYA). The level of nucleotide diversity in Australasian Anthosachne was higher than that in continental Roegneria. A low level of genetic differentiation within the A. australasica complex was found. Conclusions Anthosachne originated from historical hybridization between Australopyrum species and a Roegneria entity colonized from Asia to Australasia via South-east Asia during the late Miocene. The St lineage served as the maternal donor during the speciation of Anthosachne. A contrasting pattern of population genetic structure exists in the A. australasica complex. Greater diversity in island Anthosachne compared with continental Roegneria might be associated with mutation, polyploidization, apomixis and expansion. It is reasonable to consider that A. australasica var. scabra and A. australasica var. plurinervisa should be included in the A. australasica complex. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03057364
Volume :
119
Issue :
1
Database :
Academic Search Index
Journal :
Annals of Botany
Publication Type :
Academic Journal
Accession number :
120623281
Full Text :
https://doi.org/10.1093/aob/mcw222