Back to Search Start Over

Energy-Efficient Time Synchronization Based on Asynchronous Source Clock Frequency Recovery and Reverse Two-Way Message Exchanges in Wireless Sensor Networks.

Authors :
Kim, Kyeong Soo
Lee, Sanghyuk
Lim, Eng Gee
Source :
IEEE Transactions on Communications. Jan2017, Vol. 65 Issue 1, p347-359. 13p.
Publication Year :
2017

Abstract

We consider energy-efficient time synchronization in a wireless sensor network where a head node is equipped with a powerful processor and supplied power from outlet, and sensor nodes are limited in processing and battery-powered. It is this asymmetry that our study focuses on; unlike most existing schemes to save the power of all network nodes, we concentrate on battery-powered sensor nodes in minimizing energy consumption for time synchronization. We present a time synchronization scheme based on asynchronous source clock frequency recovery and reverse two-way message exchanges combined with measurement data report messages, where we minimize the number of message transmissions from sensor nodes while achieving sub-microsecond time synchronization accuracy through propagation delay compensation. We carry out the performance analysis of the estimation of both measurement time and clock frequency with lower bounds for the latter. Simulation results verify that the proposed scheme outperforms the schemes based on conventional two-way message exchanges with and without clock frequency recovery in terms of the accuracy of measurement time estimation and the number of message transmissions and receptions at sensor nodes as an indirect measure of energy efficiency. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
00906778
Volume :
65
Issue :
1
Database :
Academic Search Index
Journal :
IEEE Transactions on Communications
Publication Type :
Academic Journal
Accession number :
120763663
Full Text :
https://doi.org/10.1109/TCOMM.2016.2626281