Back to Search
Start Over
From gas dynamics with large friction to gradient flows describing diffusion theories.
- Source :
-
Communications in Partial Differential Equations . 2017, Vol. 42 Issue 2, p261-290. 30p. - Publication Year :
- 2017
-
Abstract
- We study the emergence of gradient flows in Wasserstein distance as high friction limits of an abstract Euler flow generated by an energy functional. We develop a relative energy calculation that connects the Euler flow to the gradient flow in the diffusive limit regime. We apply this approach to prove convergence from the Euler–Poisson system with friction to the Keller–Segel system in the regime that the latter has smooth solutions. The same methodology is used to establish convergence from the Euler–Korteweg theory with monotone pressure laws to the Cahn–Hilliard equation. [ABSTRACT FROM PUBLISHER]
Details
- Language :
- English
- ISSN :
- 03605302
- Volume :
- 42
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Communications in Partial Differential Equations
- Publication Type :
- Academic Journal
- Accession number :
- 121520713
- Full Text :
- https://doi.org/10.1080/03605302.2016.1269808