Back to Search Start Over

From gas dynamics with large friction to gradient flows describing diffusion theories.

Authors :
Lattanzio, Corrado
Tzavaras, Athanasios E.
Source :
Communications in Partial Differential Equations. 2017, Vol. 42 Issue 2, p261-290. 30p.
Publication Year :
2017

Abstract

We study the emergence of gradient flows in Wasserstein distance as high friction limits of an abstract Euler flow generated by an energy functional. We develop a relative energy calculation that connects the Euler flow to the gradient flow in the diffusive limit regime. We apply this approach to prove convergence from the Euler–Poisson system with friction to the Keller–Segel system in the regime that the latter has smooth solutions. The same methodology is used to establish convergence from the Euler–Korteweg theory with monotone pressure laws to the Cahn–Hilliard equation. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
03605302
Volume :
42
Issue :
2
Database :
Academic Search Index
Journal :
Communications in Partial Differential Equations
Publication Type :
Academic Journal
Accession number :
121520713
Full Text :
https://doi.org/10.1080/03605302.2016.1269808