Back to Search Start Over

Quantifying demand flexibility based on structural thermal storage and comfort management of non-residential buildings: A comparison between hot and cold climate zones.

Authors :
Hurtado, L.A.
Rhodes, J.D.
Nguyen, P.H.
Kamphuis, I.G.
Webber, M.E.
Source :
Applied Energy. Jun2017, Vol. 195, p1047-1054. 8p.
Publication Year :
2017

Abstract

Recently, demand flexibility has been highlighted as a promising distributed resource from the customer side, especially from industrial customers like commercial buildings, capable of providing grid support services. However, the quantification of demand flexibility is a complex process that requires a methodology including the requirements of both the grid operators and the customers. This paper proposes a novel approach to quantify the available demand flexibility of individual buildings, while taking into account the underlying building energy physics. The proposed approach constructs on the operational flexibility concept from the power systems, and extends it to include a comfort domain, identifying different flexibility parameters with the aim of giving a better insight into the flexibility potential of commercial buildings. This method includes a development of building energy simulations to assess the effects of weather variations, construction types, and comfort constrains on demand flexibility. The proposed quantification method has been validated using 15 different office building models and two different climate zones, i.e., the Netherlands and Texas, US. The results presented in this paper suggest that buildings located in a hot climate could offer higher flexibility potential during shorter time ranges, while buildings in a cold climate could offer lower flexibility potential but during longer time ranges. Determining these differences could potentially facilitate the dispatch of flexible demand resources, to assess their real potential, and to schedule demand flexibility between stakeholders. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03062619
Volume :
195
Database :
Academic Search Index
Journal :
Applied Energy
Publication Type :
Academic Journal
Accession number :
122390750
Full Text :
https://doi.org/10.1016/j.apenergy.2017.03.004