Back to Search Start Over

Facet-Dependent Thermal Instability in LiCoO2.

Authors :
Sharifi-Asl, Soroosh
Soto, Fernando A.
Nie, Anmin
Yifei Yuan
Asayesh-Ardakani, Hasti
Foroozan, Tara
Yurkiv, Vitaliy
Boao Song
Mashayek, Farzad
Klie, Robert F.
Amine, Khalil
Jun Lu
Balbuena, Perla B.
Shahbazian-Yassar, Reza
Source :
Nano Letters. Apr2017, Vol. 17 Issue 4, p2165-2171. 7p.
Publication Year :
2017

Abstract

Thermal runaways triggered by the oxygen release from oxide cathode materials pose a major safety concern for widespread application of lithium ion batteries. Utilizing in situ aberration-corrected scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) at high temperatures, we show that oxygen release from LixCoO2 cathode crystals is occurring at the surface of particles. We correlated this local oxygen evolution from the LixCoO2 structure with local phase transitions spanning from layered to spinel and then to rock salt structure upon exposure to elevated temperatures. Ab initio molecular dynamics simulations (AIMD) results show that oxygen release is highly dependent on LixCoO2 facet orientation. While the [001] facets are stable at 300 °C, oxygen release is observed from the [012] and [104] facets, where under-coordinated oxygen atoms from the delithiated structures can combine and eventually evolve as O2. The novel understanding that emerges from the present study provides in-depth insights into the thermal runaway mechanism of Li-ion batteries and can assist the design and fabrication of cathode crystals with the most thermally stable facets. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15306984
Volume :
17
Issue :
4
Database :
Academic Search Index
Journal :
Nano Letters
Publication Type :
Academic Journal
Accession number :
122550918
Full Text :
https://doi.org/10.1021/acs.nanolett.6b04502