Back to Search Start Over

Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean.

Authors :
Ding, Qing
Zhao, Tiehong
Source :
Journal of Inequalities & Applications. 5/5/2017, Vol. 2017 Issue 1, p1-12. 12p.
Publication Year :
2017

Abstract

In this paper, we find the greatest values $\alpha_{1},\alpha_{2}$ and the smallest values $\beta_{1},\beta_{2}$ such that the double inequalities $L_{\alpha_{1}}(a,b)<\operatorname{AG}(a,b)<L_{\beta_{1}}(a,b)$ and $L_{\alpha_{2}}(a,b)< T(a,b)< L_{\beta_{2}}(a,b)$ hold for all $a, b>0$ with $a\neq b$ , where $\operatorname{AG}(a,b)$ , $T(a,b)$ and $L_{p}(a,b)$ are the arithmetic-geometric, Toader and generalized logarithmic means of two positive numbers a and b, respectively. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10255834
Volume :
2017
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Inequalities & Applications
Publication Type :
Academic Journal
Accession number :
122897223
Full Text :
https://doi.org/10.1186/s13660-017-1365-4