Back to Search
Start Over
Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean.
- Source :
-
Journal of Inequalities & Applications . 5/5/2017, Vol. 2017 Issue 1, p1-12. 12p. - Publication Year :
- 2017
-
Abstract
- In this paper, we find the greatest values $\alpha_{1},\alpha_{2}$ and the smallest values $\beta_{1},\beta_{2}$ such that the double inequalities $L_{\alpha_{1}}(a,b)<\operatorname{AG}(a,b)<L_{\beta_{1}}(a,b)$ and $L_{\alpha_{2}}(a,b)< T(a,b)< L_{\beta_{2}}(a,b)$ hold for all $a, b>0$ with $a\neq b$ , where $\operatorname{AG}(a,b)$ , $T(a,b)$ and $L_{p}(a,b)$ are the arithmetic-geometric, Toader and generalized logarithmic means of two positive numbers a and b, respectively. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10255834
- Volume :
- 2017
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Journal of Inequalities & Applications
- Publication Type :
- Academic Journal
- Accession number :
- 122897223
- Full Text :
- https://doi.org/10.1186/s13660-017-1365-4