Back to Search Start Over

Design of high-throughput and low-power true random number generator utilizing perpendicularly magnetized voltage-controlled magnetic tunnel junction.

Authors :
Hochul Lee
Ebrahimi, Farbod
Amiri, Pedram Khalili
Wang, Kang L.
Source :
AIP Advances. 2017, Vol. 7 Issue 5, p1-7. 7p.
Publication Year :
2017

Abstract

A true random number generator based on perpendicularly magnetized voltagecontrolled magnetic tunnel junction devices (MRNG) is presented. Unlike MTJs used in memory applications where a stable bit is needed to store information, in this work, the MTJ is intentionally designed with small perpendicular magnetic anisotropy (PMA). This allows one to take advantage of the thermally activated fluctuations of its free layer as a stochastic noise source. Furthermore, we take advantage of the voltage dependence of anisotropy to temporarily change the MTJ state into an unstable state when a voltage is applied. Since the MTJ has two energetically stable states, the final state is randomly chosen by thermal fluctuation. The voltage controlled magnetic anisotropy (VCMA) effect is used to generate the metastable state of the MTJ by lowering its energy barrier. The proposed MRNG achieves a high throughput (32 Gbps) by implementing a 64 × 64 MTJ array into CMOS circuits and executing operations in a parallel manner. Furthermore, the circuit consumes very low energy to generate a random bit (31.5 fJ/bit) due to the high energy efficiency of the voltage-controlled MTJ switching. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21583226
Volume :
7
Issue :
5
Database :
Academic Search Index
Journal :
AIP Advances
Publication Type :
Academic Journal
Accession number :
123413593
Full Text :
https://doi.org/10.1063/1.4978320