Back to Search Start Over

Eddy current sensor simulation.

Authors :
Bulic, Neven
Šušnjic, Livio
Source :
COMPEL. 2017, Vol. 36 Issue 3, p619-632. 14p.
Publication Year :
2017

Abstract

Purpose This paper aims to present a simulation concept and an experimental verification of a novel sensor design for the shaft position measurement based on the eddy current principle and the phase-shift measurement. The simulation method for the sensor characteristic determination is presented. Possible application of a new sensor type is theoretically presented, verified in simulation and compared with experimental results.Design/methodology/approach Sensor is based on the injection-locking phenomenon between coupled oscillators. Only one sensor per axis is used for position measurement. A pair of the sensing and reference oscillators in the sensor is electrically coupled via the coupling resistor. A change in the inductance for the eddy current sensor is simulated in the finite element method (FEM) software Flux and behavior of the sensor circuit is simulated in the SPICE simulator software LTSpice program. Finally, the simulation results are compared with the measurements conducted on the laboratory test rig.Findings A novelty in this approach is the usage of only one sensor per axis compared to the well-known differential measurement of the position that uses the opposite pair of the sensing oscillators in the same axis. A methodology for the sensor characteristic determination is presented and experimentally verified.Originality/value A new variation of a coupled-oscillator eddy current sensor design is introduced. A simulation approach for the characteristic determination of the sensors based on the weakly coupled oscillators and the injection-locking mechanism is presented. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03321649
Volume :
36
Issue :
3
Database :
Academic Search Index
Journal :
COMPEL
Publication Type :
Periodical
Accession number :
123576639
Full Text :
https://doi.org/10.1108/COMPEL-09-2016-0415