Back to Search Start Over

MIMO Full-Duplex Relaying in the Presence of Co-Channel Interference.

Authors :
Almradi, Ahmed
Hamdi, Khairi Ashour
Source :
IEEE Transactions on Vehicular Technology. Jun2017, Vol. 66 Issue 6, p4874-4885. 12p.
Publication Year :
2017

Abstract

This paper studies the deployment of multiple-input multiple-output (MIMO) full-duplex (FD) relaying systems in a multicell environment, where the source and destination nodes are equipped with a single antenna and communicating via a dual-hop amplify-and-forward (AF) relay station with multiple receive and transmit antennas in the presence of co-channel interference (CCI). This paper addresses the fundamental challenges of loopback self-interference (LI) and CCI when incorporating FD relaying in cellular systems. Due to the higher frequency reuse in FD relaying compared to its half-duplex (HD) relaying counterpart, the CCI is expected to double as the FD relay station simultaneously schedule uplink and downlink transmission on the same channel. The optimal design of relay receive and transmit precoding weight vectors, which maximizes the overall signal-to-interference-plus-noise ratio (SINR) is formulated by a proper optimization problem, and then, a closed-form suboptimal solution based on null space projection is proposed. The proposed precoding vectors are based on the added receive and transmit zero-forcing (ZF) constraints used to suppress the CCI and LI, respectively. To this end, exact closed-form expressions for the outage probability and ergodic capacity are derived, where simpler lower bound expressions are also presented. In addition, the asymptotic high signal-to-noise ratio (SNR) outage probability approximation is also considered, through which the diversity order of the null space projection (ZF/ZF) scheme is found to achieve \mathrmmin(NR-M,\, NT-1), where NR and NT are the number of relay receive and transmit antennas, respectively, and $M$ is the number of CCI interferers. Numerical results sustained by Monte Carlo simulations show the exactness of the proposed analytical expressions, as well as the tightness of the proposed lower bound expressions. In addition, simulation results for the minimum mean square error (MMSE)/ZF scheme is also considered for comparison purposes. Our results reveal that MIMO FD relaying could substantially boost the system performance, compared to its conventional MIMO HD relaying counterpart. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189545
Volume :
66
Issue :
6
Database :
Academic Search Index
Journal :
IEEE Transactions on Vehicular Technology
Publication Type :
Academic Journal
Accession number :
123805898
Full Text :
https://doi.org/10.1109/TVT.2016.2616946