Back to Search Start Over

Droplet digital polymerase chain reaction (ddPCR) assays integrated with an internal control for quantification of bovine, porcine, chicken and turkey species in food and feed.

Authors :
Shehata, Hanan R.
Li, Jiping
Chen, Shu
Redda, Helen
Cheng, Shumei
Tabujara, Nicole
Li, Honghong
Warriner, Keith
Hanner, Robert
Source :
PLoS ONE. 8/10/2017, Vol. 12 Issue 8, p1-17. 17p.
Publication Year :
2017

Abstract

Food adulteration and feed contamination are significant issues in the food/feed industry, especially for meat products. Reliable techniques are needed to monitor these issues. Droplet Digital PCR (ddPCR) assays were developed and evaluated for detection and quantification of bovine, porcine, chicken and turkey DNA in food and feed samples. The ddPCR methods were designed based on mitochondrial DNA sequences and integrated with an artificial recombinant plasmid DNA to control variabilities in PCR procedures. The specificity of the ddPCR assays was confirmed by testing both target species and additional 18 non-target species. Linear regression established a detection range between 79 and 33200 copies of the target molecule from 0.26 to 176 pg of fresh animal tissue DNA with a coefficient of determination (R2) of 0.997–0.999. The quantification ranges of the methods for testing fortified heat-processed food and feed samples were 0.05–3.0% (wt/wt) for the bovine and turkey targets, and 0.01–1.0% (wt/wt) for pork and chicken targets. Our methods demonstrated acceptable repeatability and reproducibility for the analytical process for food and feed samples. Internal validation of the PCR process was monitored using a control chart for 74 consecutive ddPCR runs for quantifying bovine DNA. A matrix effect was observed while establishing calibration curves with the matrix type under testing, and the inclusion of an internal control in DNA extraction provides a useful means to overcome this effect. DNA degradation caused by heating, sonication or Taq I restriction enzyme digestion was found to reduce ddPCR readings by as much as 4.5 fold. The results illustrated the applicability of the methods to quantify meat species in food and feed samples without the need for a standard curve, and to potentially support enforcement activities for food authentication and feed control. Standard reference materials matching typical manufacturing processes are needed for future validation of ddPCR assays for absolute quantification of meat species. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
12
Issue :
8
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
124556251
Full Text :
https://doi.org/10.1371/journal.pone.0182872