Back to Search
Start Over
Porphyrinic metal-organic framework/macroporous carbon composites for electrocatalytic applications.
- Source :
-
Electrochimica Acta . Sep2017, Vol. 247, p41-49. 9p. - Publication Year :
- 2017
-
Abstract
- In this work, a novel porphyrinic metal-organic framework-based composite has been successfully synthesized by a simple one-step solvothermal method through growing Zr-PorMOF on macroporous carbon (MPC). Porphyrin-base MOFs combining the structural adjustable of MOFs and the specific catalytic activity of biomimetic catalysts play an important role in electrocatalysis. A series of characterization show that the roles of MPC as follow: (1) MPC could avoid the agglomeration of Zr-PorMOF particles and increase the specific surface area; (2) MPC could improve the electrochemical stability of Zr-PorMOF particles; (3) MPC could reduce the electron transfer resistance. Therefore, MPC plays the role of the conductive bridges to provide facile charge transport. The obtained Zr-PorMOF/MPC composites exhibit much better electrocatalytic activity for the reduction of hydrogen peroxide (H 2 O 2 ) than the pristine Zr-PorMOF due to the synergy of Zr-PorMOF and MPC. This enzyme-free H 2 O 2 sensor shows two linear relationships in the ranges 0.5–137 μM (R 2 = 0.991, sensitivity = 66 μA mM −1 ) and 137–3587 μM (R 2 = 0.993, sensitivity = 16 μA mM −1 ), with a low over-potential at −0.2 V, a fast response time within 1 s and a low limit of detection (LOD) of 0.18 μM. Moreover, Zr-PorMOF/MPC composites were used to simultaneously detect uric acid (UA), xanthine (XA) and hypoxanthine (HX). These three substances are degradation products of purine metabolism. In addition, Zr-PorMOF/MPC composites can be used to develop multifunctional biosensors. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00134686
- Volume :
- 247
- Database :
- Academic Search Index
- Journal :
- Electrochimica Acta
- Publication Type :
- Academic Journal
- Accession number :
- 124838919
- Full Text :
- https://doi.org/10.1016/j.electacta.2017.06.176