Back to Search Start Over

Stochastic resonance in an underdamped system with FitzHug-Nagumo potential for weak signal detection.

Authors :
López, Cristian
Zhong, Wei
Lu, Siliang
Cong, Feiyun
Cortese, Ignacio
Source :
Journal of Sound & Vibration. Dec2017, Vol. 411, p34-46. 13p.
Publication Year :
2017

Abstract

Vibration signals are widely used for bearing fault detection and diagnosis. When signals are acquired in the field, usually, the faulty periodic signal is weak and is concealed by noise. Various de-noising methods have been developed to extract the target signal from the raw signal. Stochastic resonance (SR) is a technique that changed the traditional denoising process, in which the weak periodic fault signal can be identified by adding an expression, the potential, to the raw signal and solving a differential equation problem. However, current SR methods have some deficiencies such us limited filtering performance, low frequency input signal and sequential search for optimum parameters. Consequently, in this study, we explore the application of SR based on the FitzHug-Nagumo (FHN) potential in rolling bearing vibration signals. Besides, we improve the search of the SR optimum parameters by the use of particle swarm optimization (PSO). The effectiveness of the proposed method is verifie d by using both simulated and real bearing data sets. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0022460X
Volume :
411
Database :
Academic Search Index
Journal :
Journal of Sound & Vibration
Publication Type :
Academic Journal
Accession number :
125723732
Full Text :
https://doi.org/10.1016/j.jsv.2017.08.043