Back to Search Start Over

Investigation of Double-Snapback Characteristic in Resistor-Triggered SCRs Stacking Structure.

Authors :
Yen, Shiang-Shiou
Fan, Chia-Chi
Chiu, Yu-Chien
Hsu, Hsiao-Hsuan
Cheng, Chun-Hu
Lan, Yu-Pin
Chang, Chun-Yen
Source :
IEEE Transactions on Electron Devices. Oct2017, Vol. 64 Issue 10, p4200-4205. 6p.
Publication Year :
2017

Abstract

Achieving high latch-up immunity is critical for power-rail electrostatic discharge (ESD) clamp circuits in high-voltage (HV) integrated circuit products. To investigate how shunt resistance affects the transmission line pulsing current–voltage characteristics of resistance-triggered stacked silicon controlled rectifiers (SCRs), a lateral SCR (LSCR) and a modified LSCR were combined in several SCR stacked structures with various shunt resistances. Compared with in tradition stacked ESD cells, the snapback margin of the SCRs does not expand and can even be reduced. A high holding voltage of 33.4 V is achieved using the resistance-triggered stacked SCR technique in a 0.11~\mu \textm 32-V HV process. A trigger voltage of approximately 51 V and a failure current of 3.3 A is achieved in this experiment. According to theorem analysis based on a voltage decoupling equation, the minimum trigger voltage can probably be further reduced to 46 V by using the resistance-triggered stacked SCR technique. This paper can offer a simple guideline for designing ESD protection circuit using the resistor-triggered SCRs stacking structure. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
00189383
Volume :
64
Issue :
10
Database :
Academic Search Index
Journal :
IEEE Transactions on Electron Devices
Publication Type :
Academic Journal
Accession number :
125755813
Full Text :
https://doi.org/10.1109/TED.2017.2736511