Back to Search Start Over

Multi-objective thermodynamic optimisation of supercritical CO 2 Brayton cycles integrated with solar central receivers.

Authors :
Vasquez Padilla, Ricardo
Soo Too, Yen Chean
Benito, Regano
McNaughton, Robbie
Stein, Wes
Source :
International Journal of Sustainable Energy. Jan2018, Vol. 37 Issue 1, p1-20. 20p.
Publication Year :
2018

Abstract

In this paper, optimisation of the supercritical COBrayton cycles integrated with a solar receiver, which provides heat input to the cycle, was performed. Four S-COBrayton cycle configurations were analysed and optimum operating conditions were obtained by using a multi-objective thermodynamic optimisation. Four different sets, each including two objective parameters, were considered individually. The individual multi-objective optimisation was performed by using Non-dominated Sorting Genetic Algorithm. The effect of reheating, solar receiver pressure drop and cycle parameters on the overall exergy and cycle thermal efficiency was analysed. The results showed that, for all configurations, the overall exergy efficiency of the solarised systems achieved at maximum value between 700°C and 750°C and the optimum value is adversely affected by the solar receiver pressure drop. In addition, the optimum cycle high pressure was in the range of 24.2–25.9 MPa, depending on the configurations and reheat condition. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14786451
Volume :
37
Issue :
1
Database :
Academic Search Index
Journal :
International Journal of Sustainable Energy
Publication Type :
Academic Journal
Accession number :
125811295
Full Text :
https://doi.org/10.1080/14786451.2016.1166109