Back to Search Start Over

Highly efficient iterative algorithms for solving nonlinear systems with arbitrary order of convergence [formula omitted], [formula omitted].

Authors :
Cordero, Alicia
Jordán, Cristina
Torregrosa, Juan R.
Sanabria-Codesal, Esther
Source :
Journal of Computational & Applied Mathematics. Mar2018, Vol. 330, p748-758. 11p.
Publication Year :
2018

Abstract

It is known that the concept of optimality is not defined for multidimensional iterative methods for solving nonlinear systems of equations. However, usually optimal fourth-order schemes (extended to the case of several variables) are employed as starting steps in order to design higher order methods for this kind of problems. In this paper, we use a non-optimal (in scalar case) iterative procedure that is specially efficient for solving nonlinear systems, as the initial steps of an eighth-order scheme that improves the computational efficiency indices of the existing methods, as far as the authors know. Moreover, the method can be modified by adding similar steps, increasing the order of convergence three times per step added. This kind of procedures can be used for solving big-sized problems, such as those obtained by applying finite differences for approximating the solution of diffusion problem, heat conduction equations, etc. Numerical comparisons are made with the same existing methods, on standard nonlinear systems and Fisher’s equation by transforming it in a nonlinear system by using finite differences. From these numerical examples, we confirm the theoretical results and show the performance of the proposed schemes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03770427
Volume :
330
Database :
Academic Search Index
Journal :
Journal of Computational & Applied Mathematics
Publication Type :
Academic Journal
Accession number :
125944024
Full Text :
https://doi.org/10.1016/j.cam.2017.02.032