Back to Search Start Over

Corrections to “A New Efficient Unconditionally Stable Finite-Difference Time-Domain Solution of the Wave Equation”.

Authors :
Sadrpour, Seyed-Mojtaba
Nayyeri, Vahid
Soleimani, Mohammad
Ramahi, Omar M.
Source :
IEEE Transactions on Antennas & Propagation. Nov2017, Vol. 65 Issue 11, p6197-6197. 1p.
Publication Year :
2017

Abstract

In <xref ref-type="bibr" rid="ref1">[1]</xref>, rx , ry , and \textbf G\textbf {M} were mistyped. The correct values are <disp-formula> \begin{align*} r_{x}=&\frac {\sqrt {2} \Delta t}{\sqrt {\varepsilon \mu } \Delta x} \sin {\left ({\frac { k_{x} \Delta x}{2} }\right )}\\ r_{y}=&\frac {\sqrt {2} \Delta t}{\sqrt {\varepsilon \mu } \Delta y} \sin {\left ({\frac { k_{y} \Delta y}{2} }\right )}\\ \mathbf {G_{M}}=&\begin{matrix} \left [{ \begin{matrix} \big (1+r_{x}^{2}\big )(\xi ^{2}+1)-2\xi &\quad -(2r_{x} r_{y}) \xi \\ -(2r_{x} r_{y}) \xi &\quad \big (1+r_{y}^{2}\big )(\xi ^{2}+1)-2\xi \end{matrix} }\right ]. \end{matrix} \end{align*} </disp-formula> [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0018926X
Volume :
65
Issue :
11
Database :
Academic Search Index
Journal :
IEEE Transactions on Antennas & Propagation
Publication Type :
Academic Journal
Accession number :
125967880
Full Text :
https://doi.org/10.1109/TAP.2017.2756681