Back to Search Start Over

Numerical Simulation of an Offset Jet in Bounded Pool with Deflection Wall.

Authors :
Li, Xin
Wang, Yurong
Zhang, Jianmin
Source :
Mathematical Problems in Engineering. 10/31/2017, p1-11. 11p.
Publication Year :
2017

Abstract

The k-ε turbulent model and VOF methods were used to simulate the three-dimensional turbulence jet. Numerical simulations were carried out for three different kinds of jets in a bounded pool with the deflection wall with angles of 0°, 3°, 6°, and 9°. The numerical simulation agrees well with the experimental data. The studies show that the length of the potential core zone increases with the increase of the deflection angle. The velocity distribution is consistent with the Gaussian distribution and almost not affected by the deflection angle in potential core zone. The decay rates of flow velocity in the transition zone are 1.195, 1.281, 1.439, and 1.532 corresponding to the unilateral deflection angles, 0°, 3°, 6°, and 9°, respectively. The decay rates of velocity in the transition zone are 1.928 and 2.835 corresponding to the bilateral deflection angles 3° and 6°. It is also found that the spread of velocity is stronger in the vertical direction as the deflection angles become smaller. The spread rates of velocity with unilateral deflection wall are higher than those with bilateral deflection walls in the horizontal plane in the pool. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1024123X
Database :
Academic Search Index
Journal :
Mathematical Problems in Engineering
Publication Type :
Academic Journal
Accession number :
125973962
Full Text :
https://doi.org/10.1155/2017/5943143