Back to Search Start Over

Quantum coherence, radiance, and resistance of gravitational systems.

Authors :
Oniga, Teodora
Wang, Charles H.-T.
Source :
Physical Review D: Particles, Fields, Gravitation & Cosmology. 10/15/2017, Vol. 96 Issue 8, p1-1. 1p.
Publication Year :
2017

Abstract

We develop a general framework for the open dynamics of an ensemble of quantum particles subject to spacetime fluctuations about the flat background. An arbitrary number of interacting bosonic and fermionic particles are considered. A systematic approach to the generation of gravitational waves in the quantum domain is presented that recovers known classical limits in terms of the quadrupole radiation formula and backreaction dissipation. Classical gravitational emission and absorption relations are quantized into their quantum field theoretical counterparts in terms of the corresponding operators and quantum ensemble averages. Certain arising consistency issues related to factor ordering have been addressed and resolved. Using the theoretical formulation established here with numerical simulations in the quantum regime, we discuss potential new effects including decoherence through the spontaneous emission of gravitons and collectively amplified radiation of gravitational waves by correlated quantum particles. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
24700010
Volume :
96
Issue :
8
Database :
Academic Search Index
Journal :
Physical Review D: Particles, Fields, Gravitation & Cosmology
Publication Type :
Periodical
Accession number :
126070795
Full Text :
https://doi.org/10.1103/PhysRevD.96.084014