Back to Search
Start Over
Quality by Design (QbD) approach to optimize the formulation of a bilayer combination tablet (Telmiduo®) manufactured via high shear wet granulation.
- Source :
-
International Journal of Pharmaceutics . Dec2017, Vol. 534 Issue 1/2, p144-158. 15p. - Publication Year :
- 2017
-
Abstract
- A bilayer tablet, which consisted of telmisartan and amlodipine besylate, was formulated based on a Quality by Design (QbD) approach. The control and response factors were determined based on primary knowledge and the target values of the control tablet (Twynsta ® ). A D-optimal mixture design was used to obtain the optimal formulations in terms of D-mannitol, crospovidone, and MCC for the telmisartan layer, and CCM-Na, PVP K25, and Prosolv for the amlodipine layer. The quantitative effects of the different formulation factors on the response factors were accurately predicted using the equations of best fit and a strong linearity was observed between the predicted and actual values of the response factors. The optimized bilayer tablet was obtained using a numeric optimization technique and was characterized compared with a control (Twynsta ® ) by using various physical evaluations and in vivo pharmacokinetic parameters. The physical stability of Telmiduo ® was greater than that of Twynsta ® owing to the improvement of formulation factors. The in vivo pharmacokinetic parameters suggested that Telmiduo ® might have pharmaceutical equivalence and bioequivalence with Twynsta ® . Therefore, the bilayer tablet that consisted of telmisartan and amlodipine besylate could be produced using a more economical and simpler method than that used to produce Twynsta ® . Moreover, the suitability of QbD for effective product development in the pharmaceutical industry was shown. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03785173
- Volume :
- 534
- Issue :
- 1/2
- Database :
- Academic Search Index
- Journal :
- International Journal of Pharmaceutics
- Publication Type :
- Academic Journal
- Accession number :
- 126163114
- Full Text :
- https://doi.org/10.1016/j.ijpharm.2017.10.004