Back to Search Start Over

PbSe quantum dots-based chemiresistors for room-temperature NO2 detection.

Authors :
Li, Min
Luo, Jingting
Fu, Chen
Kan, Hao
Huang, Zhen
Huang, Wangman
Yang, Shuqin
Zhang, Jianbing
Tang, Jiang
Fu, Yongqing
Li, Honglang
Liu, Huan
Source :
Sensors & Actuators B: Chemical. Mar2018, Vol. 256, p1045-1056. 12p.
Publication Year :
2018

Abstract

Colloidal quantum dots (CQDs) are promising building blocks for low-cost and high-performance gas sensors due to their excellent solution processability and extremely small size. Among chalcogenide CQDs, PbSe has a large exciton Bohr radius and exhibits strong confinement energies, facilitating the fast charge-carrier transport. However, CQDs-based devices are susceptible to degrade due to the poor stability of CQDs. Here, in order to obtain air-stable PbSe CQDs for gas sensing application, we synthesized PbSe CQDs using a cation exchange method with in situ chloride and cadmium passivation. The sharp absorption peak in UV–vis absorption spectra confirmed strong quantum confinement in the PbSe CQDs and their average diameter was estimated to be 2.87 ± 0.23 nm. To construct gas sensors, PbSe CQDs were spin-coated onto ceramic substrates and then Pb(NO 3 ) 2 treatment was carried out to remove the long-chain ligands surrounding PbSe CQDs. At 25 °C, the sensor was highly sensitive and selective to NO 2 with a response of 22.3 at 50 ppm and a fast response time of 7 s. Moreover, the sensor response showed a 85.2% stability as the time increased up to 20 days, suggesting the potential applications of PbSe CQDs for NO 2 monitoring at room temperature. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09254005
Volume :
256
Database :
Academic Search Index
Journal :
Sensors & Actuators B: Chemical
Publication Type :
Academic Journal
Accession number :
126210263
Full Text :
https://doi.org/10.1016/j.snb.2017.10.047