Back to Search Start Over

Influence of Shenxiong Glucose Injection on the Activities of Six CYP Isozymes and Metabolism of Warfarin in Rats Assessed Using Probe Cocktail and Pharmacokinetic Approaches.

Authors :
Jia Sun
Yuan Lu
Yueting Li
Jie Pan
Chunhua Liu
Zipeng Gong
Jing Huang
Jiang Zheng
Lin Zheng
Yongjun Li
Ting Liu
Yonglin Wang
Source :
Molecules. Nov2017, Vol. 22 Issue 11, p1994. 12p.
Publication Year :
2017

Abstract

Shenxiong glucose injection (SGI), a traditional Chinese medicine (TCM) preparation, has been widely used for the treatment of various cardiovascular and cerebrovascular diseases for many years. We assessed the potential influences of SGI on the activities of six CYP enzymes (CYP1A2, CYP2C11, CYP2C19, CYP2D4, CYP2E1, and CYP3A2) and on the pharmacokinetics of warfarin in rats. We compared plasma pharmacokinetics of six probe drugs (caffeine/CYP1A2, tolbutamide/CYP2C11, omeprazole/CYP2C19, metoprolol/CYP2D4, chlorzoxazone/CYP2E1, and midazolam/CYP3A2) and of warfarin between control and SGI-pretreated groups, to estimate the effect on the relative activities of the six isozymes and warfarin metabolism. There were no significant differences in the pharmacokinetic parameters of caffeine, omeprazole, metoprolol, chlorzoxazone, and midazolam between the SGI-pretreated and control groups. However, many pharmacokinetic parameters of tolbutamide in SGI-pretreated rats were affected significantly (p < 0.05), and indicated tolbutamide metabolism in the former group was markedly slower. Moreover, SGI reduced the clearance of warfarin. These results suggested SGI showed no effects on the enzyme activities of rat CYP1A2, CYP2C19, CYP2D4, CYP2E1, and CYP3A2, but inhibited the enzyme activity of CYP2C11, and improved the blood concentration of warfarin. This suggests that the dose of warfarin may need be adjusted when co-administrated with SGI. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
22
Issue :
11
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
126506303
Full Text :
https://doi.org/10.3390/molecules22111994