Back to Search Start Over

RSK2 phosphorylates T-bet to attenuate colon cancer metastasis and growth.

Authors :
Ke Yao
Cong Peng
Yuwen Zhang
Zykova, Tatyana A.
Mee-Hyun Lee
Sung-Young Lee
Enyu Rao
Hanyong Chen
Joohyun Ryu
Lei Wang
Yi Zhang
Ge Gao
Wei He
Wei-Ya Ma
Kangdong Liu
Bode, Ann M.
Ziming Dong
Bing Li
Zigang Dong
Source :
Proceedings of the National Academy of Sciences of the United States of America. 11/28/2017, Vol. 114 Issue 48, p12791-12796. 6p.
Publication Year :
2017

Abstract

Metastasis is a major cause of cancer-related deaths. Approximately 80% of patients with colorectal cancer develop liver metastasis and 20% develop lung metastasis. We found that at different stages of colon cancer, IFNγ secretion from peripheral blood mononuclear cells was decreased compared with healthy controls. The ribosomal S6 kinase (RSK) family of kinases has multiple cellular functions, and we examined their roles in this observed IFNγ decrease. Flow cytometry analysis of wild-type (WT) and RSK2 knockout (KO)mice revealed significantly lower levels of IFNγ in the RSK2 KO mice compared with the WT mice. Since IFNγ is a component of immunity, which contributes to protection against metastatic carcinomas, we conducted a colon cancer liver metastasis experiment. We found significantly greater metastasis in RSK2 KO mice compared with WT mice. Transcription factor T-bet can directly activate Ifnγ gene transcription. In vitro kinase assay results showed that RSK2 phosphorylated T-bet at serines 498 and 502. We show that phosphorylation of T-bet by RSK2 is required for IFNγ expression, because knockdown of RSK2 expression or overexpression of mutant T-bet reduces IFNγ mRNA expression. To verify the function of the phosphorylation sites, we overexpressed a constitutively active mutant T-bet (S498E/S502E) in bone marrow. Mutant T-bet restored the IFNγ mRNA levels and dramatically reduced the metastasis rate in these mice. Overall, these results indicate that phosphorylation of T-bet is required for the inhibition of colon cancer metastasis and growth through a positive regulation of RSK2/T-bet/IFNγ signaling. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
114
Issue :
48
Database :
Academic Search Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
126507431
Full Text :
https://doi.org/10.1073/pnas.1710756114