Back to Search Start Over

Separation of 103Ru from a proton irradiated thorium matrix: A potential source of Auger therapy radionuclide 103mRh.

Authors :
Mastren, Tara
Radchenko, Valery
Hopkins, Philip D.
Engle, Jonathan W.
Weidner, John W.
Copping, Roy
Brugh, Mark
Nortier, F. Meiring
Birnbaum, Eva R.
John, Kevin D.
Fassbender, Michael Ernst-Heinrich
Source :
PLoS ONE. 12/22/2017, Vol. 12 Issue 12, p1-10. 10p.
Publication Year :
2017

Abstract

Ruthenium-103 is the parent isotope of 103mRh (t1/2 56.1 min), an isotope of interest for Auger electron therapy. During the proton irradiation of thorium targets, large amounts of 103Ru are generated through proton induced fission. The development of a two part chemical separation process to isolate 103Ru in high yield and purity from a proton irradiated thorium matrix on an analytical scale is described herein. The first part employed an anion exchange column to remove cationic actinide/lanthanide impurities along with the majority of the transition metal fission products. Secondly, an extraction chromatographic column utilizing diglycolamide functional groups was used to decontaminate 103Ru from the remaining impurities. This method resulted in a final radiochemical yield of 83 ± 5% of 103Ru with a purity of 99.9%. Additionally, measured nuclear reaction cross sections for the formation of 103Ru and 106Ru via the 232Th(p,f)103,106Ru reactions are reported within. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
12
Issue :
12
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
126960326
Full Text :
https://doi.org/10.1371/journal.pone.0190308