Back to Search Start Over

Jagged cracking in the heat-affected zone of weld overlay on coke drum cladding.

Authors :
Wang, Yiyu
Kannan, Rangasayee
Li, Leijun
Suzuk, Yasin
Ting, Darren
Yuen, Simon
Garcia, Maria
Source :
Engineering Failure Analysis. Mar2018, Vol. 85, p14-25. 12p.
Publication Year :
2018

Abstract

Jagged cracks were observed in SA240 Type 405 stainless steel cladding of Inconel 625 overlay repaired coke drums. It is found that intergranular cracking is the dominant fracture mode in the fine-grained heat-affected zone (FGHAZ) of the boat specimens. The sensitization effect from the operation and welding thermal cycles leads to the depletion of Cr with the preferential precipitation of Cr-rich M 23 C 6 carbides along the grain boundaries. The cladding FGHAZ has the largest frequency of grain boundaries with higher local strain levels and the highest fraction of grain boundary Cr-rich M 23 C 6 carbides. Thermal stress distributions predicted by finite element analysis clearly show the maximum shear stress to exhibit the typical “jagged” pattern near the cracked regions. Thermal expansion coefficient and strength mismatch among the shell base metal, cladding, and overlay is believed to have caused the unique jagged maximum shear stress distribution in the cladding HAZ of Inconel 625 overlay. The magnitude of this thermal stress can reach the yield strength of the cladding at 900 °F (482 °C) service temperature, therefore, provides the driving force for the jagged cracking formation in the sensitized HAZ. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13506307
Volume :
85
Database :
Academic Search Index
Journal :
Engineering Failure Analysis
Publication Type :
Academic Journal
Accession number :
127138773
Full Text :
https://doi.org/10.1016/j.engfailanal.2017.12.006