Back to Search Start Over

Interplay of structure, elasticity, and dynamics in actin-based nematic materials.

Authors :
Rui Zhang
Kumar, Nitin
Ross, Jennifer L.
Gardel, Margaret L.
De Pablo, Juan J.
Source :
Proceedings of the National Academy of Sciences of the United States of America. 1/9/2018, Vol. 115 Issue 2, pE124-E133. 10p.
Publication Year :
2018

Abstract

Achieving control and tunability of lyotropic materials has been a long-standing goal of liquid crystal research. Here we show that the elasticity of a liquid crystal system consisting of a dense suspension of semiflexible biopolymers can be manipulated over a relatively wide range of elastic moduli. Specifically, thin films of actin filaments are assembled at an oil-water interface. At sufficiently high concentrations, one observes the formation of a nematic phase riddled with ± 1/2 topological defects, characteristic of a two-dimensional nematic system. As the average filament length increases, the defect morphology transitions from a U shape into a V shape, indicating the relative increase of the material's bend over splay modulus. Furthermore, through the sparse addition of rigid microtubule filaments, one can gain additional control over the liquid crystal's elasticity. We show how the material's bend constant can be raised linearly as a function of microtubule filament density, and present a simple means to extract absolute values of the elastic moduli from purely optical observations. Finally, we demonstrate that it is possible to predict not only the static structure of the material, including its topological defects, but also the evolution of the system into dynamically arrested states. Despite the nonequilibrium nature of the system, our continuum model, which couples structure and hydrodynamics, is able to capture the annihilation and movement of defects over long time scales. Thus, we have experimentally realized a lyotropic liquid crystal system that can be truly engineered, with tunable mechanical properties, and a theoretical framework to capture its structure, mechanics, and dynamics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
115
Issue :
2
Database :
Academic Search Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
127235889
Full Text :
https://doi.org/10.1073/pnas.1713832115