Back to Search Start Over

Remote Ischemic Postconditioning Protects against Myocardial Ischemia-Reperfusion Injury by Inhibition of the RAGE-HMGB1 Pathway.

Authors :
Wang, Xiangming
Wang, Junhong
Tu, Tiantian
Iyan, Zakaria
Mungun, Deeraj
Yang, Zhijian
Guo, Yan
Source :
BioMed Research International. 1/23/2018, Vol. 2018, p1-9. 9p.
Publication Year :
2018

Abstract

Background. The aim of the present study was to observe the effect of RAGE-HMGB1 signal pathway on remote ischemic postconditioning in mice with myocardial ischemia reperfusion injury. Methods. Mice model of MIRI was established and randomly divided into three groups: control group, ischemia reperfusion group, and remote ischemic postconditioning group. Infarction size was detected by Evans blue and TTC staining. Cardiac function was detected by echocardiography measurement. The protein levels of RAGE, HMGB1, P-AKT, and ERK1/2 were detected by Western blot 120 min following reperfusion. Results. RIPostC could decrease the infarct size and increase LVEF and FS compared with I/R group. Two hours after myocardial ischemia reperfusion, the levels of RAGE and HMGB1 were significantly decreased in RIPostC group compared with those in I/R group. The level of p-AKT was significantly higher in the RIPostC group than in the I/R group. LY294002 significantly attenuated RIPostC-increased levels of Akt phosphorylation. Conclusion. RIPostC may inhibit the expression of RAGE and HMGB1 and activate PI3K/Akt signaling pathway to extenuate ischemic reperfusion injury in mice. It could further suppress the oxidative stress, have antiapoptosis effect, and reduce inflammatory reaction, but this effect has certain timeliness. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23146133
Volume :
2018
Database :
Academic Search Index
Journal :
BioMed Research International
Publication Type :
Academic Journal
Accession number :
127516334
Full Text :
https://doi.org/10.1155/2018/4565630