Back to Search Start Over

Mechanism insight into rapid photocatalytic disinfection of Salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures.

Authors :
Wang, Rong
Kong, Xiangyu
Zhang, Wentao
Zhu, Wenxin
Huang, Lunjie
Wang, Jing
Zhang, Xu
Liu, Xinnan
Hu, Na
Suo, Yourui
Wang, Jianlong
Source :
Applied Catalysis B: Environmental. Jun2018, Vol. 225, p228-237. 10p.
Publication Year :
2018

Abstract

Photocatalytic disinfection, which is a readily reliable method in most climates, holds great promise to significantly reduce the microbial contamination in modern industry. Here we report that vanadate quantum dots-interspersed graphitic carbon nitride (vanadate QDs/g-C 3 N 4 ) can achieve efficient inactivation of Salmonella by harvesting a substantial visible light. Detailed characterization through SEM-EDS, TEM, XRD, FT-IR, and XPS confirmed the formation of the composites. Owing to the efficient reactive oxygen species (ROS) production between vanadate QDs and g-C 3 N 4 , the bactericidal efficiency of AgVO 3 QDs/g-C 3 N 4 could reach 96.4% toward Salmonella in a concentration of 0.75 mg/mL after 10 min visible-light illumination. More importantly, scavenger experiments of different reactive species proved that the photoinduced electron generated at the oxidation site of AgVO 3 /g-C 3 N 4 play a major role as oxidative species. Fluorescent-based cell live/dead test and membrane potentials were applied to demonstrate the integrity of cell membranes. Furthermore, the SEM technology, PCR and BCA protein assay were employed to verify the bacterial decomposition as well as leakage of bacterial cell contents toward Salmonella . Sterilization experiments of Staphylococcus aureus revealed that our composites have broad spectrum antimicrobial activity for both Gram-negative and Gram-positive bacteria under visible light. The results showed that the generation of high ROS could attack the bacterial cells membrane, and ultimately disrupt the cell metabolism through bacterial contents, which provided a feasible method for eliminating the microbial contaminated water. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09263373
Volume :
225
Database :
Academic Search Index
Journal :
Applied Catalysis B: Environmental
Publication Type :
Academic Journal
Accession number :
127759158
Full Text :
https://doi.org/10.1016/j.apcatb.2017.11.060