Back to Search Start Over

Excessive glucocorticoid-induced muscle MuRF1 overexpression is independent of Akt/FoXO1 pathway.

Authors :
Xiao Juan Wang
Jing Jing Xiao
Lei Liu
Hong Chao Jiao
Hai Lin
Source :
Bioscience Reports. Nov2017, Vol. 37 Issue 6, p1-11. 11p. 1 Diagram, 6 Graphs.
Publication Year :
2017

Abstract

The ubiquitin-proteasome system (UPS)-dependent proteolysis plays a major role in the muscle catabolic action of glucocorticoids (GCs). Atrogin-1 and muscle-specific RING finger protein 1 (MuRF1), two E3 ubiquitin ligases, are uniquely expressed in muscle. It has been previously demonstrated that GC treatment induced MuRF1 and atrogin-1 overexpression. However, it is yet unclear whether the higher pharmacological dose of GCs induced muscle protein catabolism through MuRF1 and atrogin-1. In the present study, the role of atrogin-1 and MuRF1 in C2C12 cells protein metabolism during excessive dexamethasone (DEX) was studied. The involvement of Akt/forkhead box O1 (FoXO1) signaling pathway and the cross-talk between anabolic regulator mammalian target of rapamycin (mTOR) and catabolic regulator FoXO1 were investigated. High concentration of DEX increased MuRF1 protein level in a time-dependent fashion (P<0.05), while had no detectable effect on atrogin-1 protein (P>0.05). FoXO1/3a (Thr24/32) phosphorylation was enhanced (P<0.05), mTOR phosphorylation was suppressed (P<0.05), while Akt protein expression was not affected (P>0.05) by DEX. RU486 treatment inhibited the DEX-induced increase of FoXO1/3a phosphorylation (P<0.05) and MuRF1 protein; LY294002 (LY) did not restore the stimulative effect of DEX on the FoXO1/3a phosphorylation (P>0.05), but inhibited the activation of MuRF1 protein induced by DEX (P<0.05); rapamycin (RAPA) inhibited the stimulative effect of DEX on the FoXO1/3a phosphorylation and MuRF1 protein (P<0.05). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01448463
Volume :
37
Issue :
6
Database :
Academic Search Index
Journal :
Bioscience Reports
Publication Type :
Academic Journal
Accession number :
127809376
Full Text :
https://doi.org/10.1042/BSR20171056