Back to Search Start Over

Complement activation in vitro and reactogenicity of low-molecular weight dextran-coated SPIONs in the pig CARPA model: Correlation with physicochemical features and clinical information.

Authors :
Fülöp, Tamás
Nemes, Réka
Mészáros, Tamás
Urbanics, Rudolf
Kok, Robbert Jan
Jackman, Joshua A.
Cho, Nam-Joon
Storm, Gert
Szebeni, János
Source :
Journal of Controlled Release. Jan2018, Vol. 270, p268-274. 7p.
Publication Year :
2018

Abstract

The unique magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) have led to their increasing use in drug delivery and imaging applications. Some polymer-coated SPIONs, however, share with many other nanoparticles the potential of causing hypersensitivity reactions (HSRs) known as complement (C) activation-related pseudoallergy (CARPA). In order to explore the roles of iron core composition and particle surface coating in SPION-induced CARPA, we measured C activation by 6 different SPIONs in a human serum that is known to react to nanoparticles (NPs) with strong C activation. Remarkably, only the carboxymethyldextran-coated (ferucarbotran, Resosvist®) and dextran-coated (ferumoxtran-10, Sinerem®) SPIONs caused significant C activation, while the citric acid, phosphatidylcholine, starch and chitosan-coated SPIONs had no such effect. Focusing on Resovist and Sinerem, we found Sinerem to be a stronger activator of C than Resovist, although the individual variation in 15 different human sera was substantial. Further analysis of C activation by Sinerem indicated biphasic dose dependence and significant production of C split product Bb but not C4d, attesting to alternative pathway C activation only at low doses. Consistent with the strong C activation by Sinerem and previous reports of HSRs in man, injection of Sinerem in a pig led to dose-dependent CARPA, while Resovist was reaction-free. Using nanoparticle tracking analysis, it was further determined that Sinerem, more than Resovist, displayed multimodal size distribution and significant fraction of aggregates – factors which are known to promote C activation and CARPA. Taken together, our findings offer physicochemical insight into how key compositional factors and nanoparticle size distribution affect SPION-induced CARPA, a knowledge that could lead to the development of SPIONs with improved safety profiles. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01683659
Volume :
270
Database :
Academic Search Index
Journal :
Journal of Controlled Release
Publication Type :
Academic Journal
Accession number :
127871386
Full Text :
https://doi.org/10.1016/j.jconrel.2017.11.043