Back to Search Start Over

Chrysophanol inhibits proliferation and induces apoptosis through NF-κB/cyclin D1 and NF-κB/Bcl-2 signaling cascade in breast cancer cell lines.

Authors :
REN, Li
Li, Zhouping
Dai, Chunmei
Zhao, Danyu
Wang, Yanjie
Ma, Chunyu
Liu, Chun
Source :
Molecular Medicine Reports. Mar2018, Vol. 17 Issue 3, p4376-4382. 7p. 3 Black and White Photographs, 4 Graphs.
Publication Year :
2018

Abstract

Chrysophanol is an anthraquinone compound, which exhibits anticancer effects on certain types of cancer cells. However, the effects of chrysophanol on human breast cancer remain to be elucidated. The aim of the present study was to clarify the role of chrysophanol on breast cancer cell lines MCF‑7 and MDA‑MB‑231, and to identify the signal transduction pathways regulated by chrysophanol. MTT assay and flow cytometric analysis demonstrated that chrysophanol inhibited cell proliferation, and cell cycle progression in a dose‑dependent manner. The expression of cell cycle‑associated cyclin D1 and cyclin E were downregulated while p27 expression was upregulated following chrysophanol treatment at the mRNA, and protein levels. The Annexin V/propidium iodide staining assay results revealed that apoptosis levels increased following chrysophanol treatment. Chrysophanol upregulated caspase 3 and poly (ADP‑ribose) polymerase cleavage in both cell lines. Furthermore, chrysophanol enhanced the effect of paclitaxel on breast cancer cell apoptosis. In addition, chrysophanol downregulated apoptosis regulator Bcl‑2 protein, and transcription factor p65 and IκB phosphorylation. Inhbition of nuclear factor (NF)‑κB by ammonium pyrrolidine dithiocarbamate diminished the effect of chrysophanol on apoptosis and associated proteins. In conclusion, the results of the current study demonstrated that chrysophanol effectively suppresses breast cancer cell proliferation and facilitates chemosentivity through modulation of the NF‑κB signaling pathway. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17912997
Volume :
17
Issue :
3
Database :
Academic Search Index
Journal :
Molecular Medicine Reports
Publication Type :
Academic Journal
Accession number :
127920393
Full Text :
https://doi.org/10.3892/mmr.2018.8443