Back to Search Start Over

Drainage Responses to the Activity of the Langshan Range-Front Fault and Tectonic Implications.

Authors :
Dong, Shaopeng
Zhang, Peizhen
Zhang, Huiping
Zheng, Wenjun
Chen, Huixian
Source :
Journal of Earth Science. Feb2018, Vol. 29 Issue 1, p193-209. 17p.
Publication Year :
2018

Abstract

Langshan, a monoclinic mountain, which started to uplift since Oligocene, bounds the northwest margin of the Hetao Basin. The continuous activity of the active normal Langshan range-front fault forms the typical basin-and-range landform in Langshan area and controls the landform evolution of Langshan. Langshan is an ideal place to study relationship between quantitative geomorphological index and active deformation. According to study on knickpoints, fitting on longitudinal channel profiles and steepness index, we demonstrate that the main controlling factors on distribution of normalized steepness index of channels are not climate (precipitation), lithology, sediment flux, but tectonic factor, or the activity of Langshan range-front fault. The short channels in southeast flank, whose lengths are shorter than 16 km, may be still in the non-steady status. If not considering these short channels, the distribution of normalized steepness index along the Langshan range-front fault appears like M-shape pattern, while the normalized steepness index in the middle section is higher than those at both ends. This pattern is well consistent with geometrical segmentation model of the Langshan range-front fault. Combining previous active tectonic research on Langshan range-front fault, which demonstrates the Langshan range-front fault has been in the stage of linkup, we reasonably infer the Langshan range-front fault now is the result of linkup of both fault which continuously bilaterally extended independently. Our tectonic geomorphological study also supports the conclusion that the Langshan range-front fault has been in the stage of linkup. The formation of several knickpoints due to tectonic factor may have been caused by slip-rate variation because of linkup of both independent faults. Based on cognition above, we also proposed the geological and geomorphological evolutionary model of the Langshan range-front fault since Oligocene. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1674487X
Volume :
29
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Earth Science
Publication Type :
Academic Journal
Accession number :
128018373
Full Text :
https://doi.org/10.1007/s12583-017-0902-8