Back to Search Start Over

Investigation on chatter stability of thin-walled parts considering its flexibility based on finite element analysis.

Authors :
Yang Ding
Lida Zhu
Source :
International Journal of Advanced Manufacturing Technology. Feb2018, Vol. 94 Issue 9-12, p3173-3187. 15p. 1 Black and White Photograph, 6 Diagrams, 5 Charts, 13 Graphs.
Publication Year :
2018

Abstract

High-speed milling of thin-walled part is a widely used application for aerospace industry. The low rigidity components, large quantities of material removed in machining progress, are in the risk of the instability of the progress. In this paper, the thin-walled parts have the similar characteristics with the tools. Therefore, the dynamic model and the stability critical condition determined by the relative dynamic behavior between tool subsystem and workpiece subsystem are put forward. The thin-walled parts' dynamic character varies greatly with time when machining. The whole workpiece has been divided into several stages by finite element analysis (FEA) so that its various modal parameters in the milling progress can be obtained gradually; thus, the variation due to metal removal has been accurately taken into account. The stability critical condition is predicted by frequency domain method based on the dynamic behavior of the two subsystems. With the respect to time-varying critical stability condition, a three-dimensional lobe diagram has been developed to show the changing conditions of chatter. Finally, the proposed methods and models were proven by series milling experiments. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02683768
Volume :
94
Issue :
9-12
Database :
Academic Search Index
Journal :
International Journal of Advanced Manufacturing Technology
Publication Type :
Academic Journal
Accession number :
128138472
Full Text :
https://doi.org/10.1007/s00170-016-9471-x