Back to Search Start Over

Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C.

Authors :
Lin, Zhaoyu
Liu, Fei
Shi, Peiliang
Song, Anying
Huang, Zan
Zou, Dayuan
Chen, Qin
Li, Jianxin
Gao, Xiang
Source :
Stem Cell Research & Therapy. 2/26/2018, Vol. 9, p1-1. 1p.
Publication Year :
2018

Abstract

Background: Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Methods: Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography–mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. Results: We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. Conclusion: We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17576512
Volume :
9
Database :
Academic Search Index
Journal :
Stem Cell Research & Therapy
Publication Type :
Academic Journal
Accession number :
128200413
Full Text :
https://doi.org/10.1186/s13287-018-0792-6