Back to Search Start Over

Suppression of a single BAHD gene in <italic>Setaria viridis</italic> causes large, stable decreases in cell wall feruloylation and increases biomass digestibility.

Authors :
de Souza, Wagner R.
Martins, Polyana K.
Freeman, Jackie
Pellny, Till K.
Michaelson, Louise V.
Sampaio, Bruno L.
Vinecky, Felipe
Ribeiro, Ana P.
da Cunha, Barbara A. D. B.
Kobayashi, Adilson K.
de Oliveira, Patricia A.
Campanha, Raquel B.
Pacheco, Thályta F.
Martarello, Danielly C. I.
Marchiosi, Rogério
Ferrarese‐Filho, Osvaldo
dos Santos, Wanderley D.
Tramontina, Robson
Squina, Fabio M.
Centeno, Danilo C.
Source :
New Phytologist. Apr2018, Vol. 218 Issue 1, p81-93. 13p. 1 Diagram, 5 Charts, 8 Graphs.
Publication Year :
2018

Abstract

Summary: Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to enzyme attack, making it a target for improvement of grass crops, and of interest in grass evolution. Definitive evidence on the genes responsible is lacking so we studied a candidate gene that we identified within the BAHD acyl‐CoA transferase family. We used RNA interference (RNAi) silencing of orthologs in the model grasses &lt;italic&gt;Setaria viridis&lt;/italic&gt; (&lt;italic&gt;SvBAHD01&lt;/italic&gt;) and &lt;italic&gt;Brachypodium distachyon&lt;/italic&gt; (&lt;italic&gt;BdBAHD01&lt;/italic&gt;) and determined effects on AX feruloylation. Silencing of &lt;italic&gt;SvBAHD01&lt;/italic&gt; in &lt;italic&gt;Setaria&lt;/italic&gt; resulted in a &lt;italic&gt;c&lt;/italic&gt;. 60% decrease in AX feruloylation in stems consistently across four generations. Silencing of &lt;italic&gt;BdBAHD01&lt;/italic&gt; in &lt;italic&gt;Brachypodium&lt;/italic&gt; stems decreased feruloylation much less, possibly due to higher expression of functionally redundant genes. &lt;italic&gt;Setaria SvBAHD01&lt;/italic&gt; RNAi plants showed: no decrease in total lignin, approximately doubled arabinose acylated by &lt;italic&gt;p&lt;/italic&gt;‐coumarate, changes in two‐dimensional NMR spectra of unfractionated cell walls consistent with biochemical estimates, no effect on total biomass production and an increase in biomass saccharification efficiency of 40–60%. We provide the first strong evidence for a key role of the &lt;italic&gt;BAHD01&lt;/italic&gt; gene in AX feruloylation and demonstrate that it is a promising target for improvement of grass crops for biofuel, biorefining and animal nutrition applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0028646X
Volume :
218
Issue :
1
Database :
Academic Search Index
Journal :
New Phytologist
Publication Type :
Academic Journal
Accession number :
128258236
Full Text :
https://doi.org/10.1111/nph.14970