Back to Search Start Over

Size-Resolved Stratospheric Aerosol Distributions after Pinatubo Derived from a Coupled Aerosol-Chemistry-Climate Model.

Authors :
Timofei Sukhodolov
Jian-Xiong Sheng
Feinberg, Aryeh
Bei-Ping Luo
Peter, Thomas
Revell, Laura
Stenke, Andrea
Weisenstein, Debra K.
Rozanov, Eugene
Source :
Geoscientific Model Development Discussions. 2018, p1-22. 22p.
Publication Year :
2018

Abstract

We evaluate how the coupled aerosol-chemistry-climate model SOCOL-AER represents the influence of the 1991 eruption of Mt. Pinatubo on stratospheric aerosol loading, aerosol microphysical processes, radiative effects, and atmospheric chemistry. The aerosol module includes comprehensive sulfur chemistry and microphysics, in which the particle size distribution is represented by 40 size bins spanning radii from 0.39nm to 3.2μm. Radiative forcing is computed online using aerosol optical properties calculated according to Mie theory. SOCOL-AER simulations are compared with satellite and in situ measurements of aerosol parameters, temperature reanalyses, and ozone observations. In addition to the reference model configuration, we performed a series of sensitivity experiments looking at different processes affecting the aerosol layer. An accurate sedimentation scheme is found to be essential to prevent particles diffusing too rapidly to high and low altitudes. The aerosol radiative feedback and the use of a nudged quasi-biennial oscillation help to keep aerosol in the tropics and significantly affect the evolution of the stratospheric aerosol burden, which improves the agreement with observed aerosol mass distributions. Changes in the aerosol distribution affected by an inclusion of Van der Waals forces to the particle coagulation scheme suggest improvements in particle effective radius, although other parameters (such as aerosol longevity) deteriorate. Modification of the Pinatubo emission rate also improves some aerosol parameters, while worsens others compared to observations. Observations themselves are highly uncertain and render it difficult to conclusively judge the necessity of further model reconfiguration. In conclusion, our results show that SOCOL-AER is capable of predicting the most important global-scale atmospheric and climate effects following volcanic eruptions, which is also a prerequisite for improved understanding of anthropogenic effects from sulfur emissions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19919611
Database :
Academic Search Index
Journal :
Geoscientific Model Development Discussions
Publication Type :
Academic Journal
Accession number :
128294780
Full Text :
https://doi.org/10.5194/gmd-2017-326