Back to Search Start Over

Reverse $k$ Nearest Neighbor Search over Trajectories.

Authors :
Wang, Sheng
Bao, Zhifeng
Culpepper, J. Shane
Sellis, Timos
Cong, Gao
Source :
IEEE Transactions on Knowledge & Data Engineering. Apr2018, Vol. 30 Issue 4, p757-771. 15p.
Publication Year :
2018

Abstract

GPS enables mobile devices to continuously provide new opportunities to improve our daily lives. For example, the data collected in applications created by Uber or Public Transport Authorities can be used to plan transportation routes, estimate capacities, and proactively identify low coverage areas. In this paper, we study a new kind of query—Reverse k<alternatives> <inline-graphic xlink:href="wang-ieq2-2776268.gif"/></alternatives> Nearest Neighbor Search over Trajectories (\mathbf{R}{k}\mathbf{NNT}<alternatives> <inline-graphic xlink:href="wang-ieq3-2776268.gif"/></alternatives>), which can be used for route planning and capacity estimation. Given a set of existing routes \mathcal{D}_{\mathcal{R}}<alternatives><inline-graphic xlink:href="wang-ieq4-2776268.gif"/></alternatives> , a set of passenger transitions \mathcalD\mathcal{T}<alternatives><inline-graphic xlink:href="wang-ieq5-2776268.gif"/></alternatives> , and a query route Q<alternatives> <inline-graphic xlink:href="wang-ieq6-2776268.gif"/></alternatives>, an \mathbfRk\mathbfNNT<alternatives> <inline-graphic xlink:href="wang-ieq7-2776268.gif"/></alternatives> query returns all transitions that take Q<alternatives> <inline-graphic xlink:href="wang-ieq8-2776268.gif"/></alternatives> as one of its k<alternatives><inline-graphic xlink:href="wang-ieq9-2776268.gif"/> </alternatives> nearest travel routes. To solve the problem, we first develop an index to handle dynamic trajectory updates, so that the most up-to-date transition data are available for answering an \mathbfRk\mathbfNNT<alternatives> <inline-graphic xlink:href="wang-ieq10-2776268.gif"/></alternatives> query. Then we introduce a filter refinement framework for processing \mathbfRk\mathbfNNT <alternatives><inline-graphic xlink:href="wang-ieq11-2776268.gif"/></alternatives> queries using the proposed indexes. Next, we show how to use \mathbfRk\mathbfNNT <alternatives><inline-graphic xlink:href="wang-ieq12-2776268.gif"/></alternatives> to solve the optimal route planning problem \mathbfMaxRk\mathbfNNT <alternatives><inline-graphic xlink:href="wang-ieq13-2776268.gif"/></alternatives> ( \mathbfMinRk\mathbfNNT<alternatives> <inline-graphic xlink:href="wang-ieq14-2776268.gif"/></alternatives>), which is to search for the optimal route from a start location to an end location that could attract the maximum (or minimum) number of passengers based on a predefined travel distance threshold. Experiments on real datasets demonstrate the efficiency and scalability of our approaches. To the best of our knowledge, this is the first work to study the \mathbfRk\mathbfNNT<alternatives> <inline-graphic xlink:href="wang-ieq15-2776268.gif"/></alternatives> problem for route planning. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10414347
Volume :
30
Issue :
4
Database :
Academic Search Index
Journal :
IEEE Transactions on Knowledge & Data Engineering
Publication Type :
Academic Journal
Accession number :
128399899
Full Text :
https://doi.org/10.1109/TKDE.2017.2776268