Back to Search Start Over

An axisymmetric non-hydrostatic model for double-diffusive water systems.

Authors :
Hilgersom, Koen
Zijlema, Marcel
van de Giesen, Nick
Source :
Geoscientific Model Development. 2018, Vol. 11 Issue 2, p521-540. 20p.
Publication Year :
2018

Abstract

The three-dimensional (3-D) modelling of water systems involving double-diffusive processes is challenging due to the large computation times required to solve the flow and transport of constituents. In 3-D systems that approach axisymmetry around a central location, computation times can be reduced by applying a 2-D axisymmetric model set-up. This article applies the Reynolds-averaged Navier-Stokes equations described in cylindrical coordinates and integrates them to guarantee mass and momentum conservation. The discretized equations are presented in a way that a Cartesian finite-volume model can be easily extended to the developed framework, which is demonstrated by the implementation into a non-hydrostatic free-surface flow model. This model employs temperature- and salinity-dependent densities, molecular diffusivities, and kinematic viscosity. One quantitative case study, based on an analytical solution derived for the radial expansion of a dense water layer, and two qualitative case studies demonstrate a good behaviour of the model for seepage inflows with contrasting salinities and temperatures. Four case studies with respect to doublediffusive processes in a stratified water body demonstrate that turbulent flows are not yet correctly modelled near the interfaces and that an advanced turbulence model is required. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1991959X
Volume :
11
Issue :
2
Database :
Academic Search Index
Journal :
Geoscientific Model Development
Publication Type :
Academic Journal
Accession number :
128417130
Full Text :
https://doi.org/10.5194/gmd-11-521-2018