Back to Search Start Over

Experimental investigation of surface charge accumulation behaviors on PTFE insulator under DC and impulse voltage in vacuum.

Authors :
Su, Guo-Qiang
Wang, Yi-Bo
Guo, Bao-Hong
Song, Bai-Peng
Mu, Hai-Bao
Zhang, Guan-Jun
Source :
IEEE Transactions on Dielectrics & Electrical Insulation. Dec2017, Vol. 24 Issue 6, p3347-3356. 10p.
Publication Year :
2017

Abstract

Surface charge accumulated on insulators plays an important role in flashover process in vacuum, which has not yet been fully understood. In this paper, charging behaviors on insulator surface were experimentally examined under negative DC and impulse voltage. For the case of DC voltage, two charging stages were observed, i.e., the area near cathode was at first negatively charged under lower voltage (stage I) and then followed by a positively charged cathode-anode surface (stage II). Surface charging at stage I is considered to be caused by Schottky injection of homo-charges from electrode into sample surface layer. While at stage II secondary electron emission (SEE) process is responsible to the positively charged anode-cathode surface. However, charging at stage I is quite sensitive to pre-stress process, as well as the electrode-insulator interface conditions. The ongoing injection of electrons from cathode can lead to gradually decreasing in surface charge accumulation as the voltage duration increases. For the case of impulse voltage, Schottky injection of homo-charges has little influence on surface charging as the time is too short for charge injection and migration in surface layer. The SEE process will govern surface charging due to its extremely fast establishment process. A good linear relationship is obtained between saturated surface charge density and applied voltage, which is generally consistent with the numerical calculation result based on secondary electron emission avalanche theory. At last, it is confirmed that the ionization of desorbed gas from insulator surface and subsequent neutralization of electrons with positive surface charge is the main cause to eliminate surface charge in flashover. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10709878
Volume :
24
Issue :
6
Database :
Academic Search Index
Journal :
IEEE Transactions on Dielectrics & Electrical Insulation
Publication Type :
Academic Journal
Accession number :
128484338
Full Text :
https://doi.org/10.1109/TDEI.2017.006604